skip to main content


Search for: All records

Creators/Authors contains: "Walcher, C. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    This paper describes the extended data release (eDR) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. It comprises science-grade quality data for 895 galaxies obtained with the Potsdam Multi Aperture Spectograph/PPak instrument at the 3.5-m telescope at the Calar Alto Observatory along the last 12 yr, using the V500 setup [3700–7500 Å, 6 Å/full-width at half-maximum (FWHM)] and the CALIFA observing strategy. It includes galaxies of any morphological type, star formation stage, a wide range of stellar masses (∼107–1012 M⊙), at an average redshift of ∼0.015 (90 per cent within 0.005 < z < 0.05). Primarily selected based on the projected size and apparent magnitude, we demonstrate that it can be volume corrected resulting in a statistically limited but representative sample of the population of galaxies in the nearby Universe. All the data were homogeneous re-reduced, introducing a set of modifications to the previous reduction. The most relevant is the development and implementation of a new cube-reconstruction algorithm that provides with an (almost) seeing-limited spatial resolution (FWHMPSF ∼ 1.0 arcsec). To illustrate the usability and quality of the data, we extracted two aperture spectra for each galaxy (central 1.5 arcsec and fully integrated), and analyse them using pyFIT3D. We obtain a set of observational and physical properties of both the stellar populations and the ionized gas, that have been compared for the two apertures, exploring their distributions as a function of the stellar masses and morphologies of the galaxies, comparing with recent results in the literature.

     
    more » « less
  2. Context. Active galactic nuclei (AGN) are thought to be intimately connected with their host galaxies through feeding and feedback processes. A strong coupling is predicted and supported by cosmological simulations of galaxy formation, but the details of the physical mechanisms are still observationally unconstrained. Aims. Galaxies are complex systems of stars and a multiphase interstellar medium (ISM). A spatially resolved multiwavelength survey is required to map the interaction of AGN with their host galaxies on different spatial scales and different phases of the ISM. The goal of the Close AGN Reference Survey (CARS) is to obtain the necessary spatially resolved multiwavelength observations for an unbiased sample of local unobscured luminous AGN. Methods. We present the overall CARS survey design and the associated wide-field optical integral-field unit (IFU) spectroscopy for all 41 CARS targets at z  < 0.06 randomly selected from the Hamburg/ESO survey of luminous unobscured AGN. This data set provides the backbone of the CARS survey and allows us to characterize host galaxy morphologies, AGN parameters, precise systemic redshifts, and ionized gas distributions including excitation conditions, kinematics, and metallicities in unprecedented detail. Results. We focus our study on the size of the extended narrow-line region (ENLR) which has been traditionally connected to AGN luminosity. Given the large scatter in the ENLR size–luminosity relation, we performed a large parameter search to identify potentially more fundamental relations. Remarkably, we identified the strongest correlation between the maximum projected ENLR size and the black hole mass, consistent with an R ENLR,max ∼ M BH 0.5 relationship. We interpret the maximum ENLR size as a timescale indicator of a single black hole (BH) radiative-efficient accretion episode for which we inferred 〈log( t AGN /[yr])〉 = (0.45 ± 0.08)log( M BH /[ M ⊙ ]) + 1.78 −0.67 +0.54 using forward modeling. The extrapolation of our inferred relation toward higher BH masses is consistent with an independent lifetime estimate from the He  II proximity zones around luminous AGN at z  ∼ 3. Conclusions. While our proposed link between the BH mass and AGN lifetime might be a secondary correlation itself or impacted by unknown biases, it has a few relevant implications if confirmed. For example, the famous AGN Eigenvector 1 parameter space may be partially explained by the range in AGN lifetimes. Also, the lack of observational evidence for negative AGN feedback on star formation can be explained by such timescale effects. Further observational tests are required to confirm or rule out our BH mass dependent AGN lifetime hypothesis. 
    more » « less